The extremal spheres theorem

نویسندگان

  • Arseniy V. Akopyan
  • Alexey A. Glazyrin
  • Oleg R. Musin
  • Alexey S. Tarasov
چکیده

Consider a polygon P and all neighboring circles (circles going through three consecutive vertices of P ). We say that a neighboring circle is extremal if it is empty (no vertices of P inside) or full (no vertices of P outside). It is well known that for any convex polygon there exist at least two empty and at least two full circles, i.e. at least four extremal circles. In 1990 Schatteman considered a generalization of this theorem for convex polytopes in d-dimensional Euclidean space. Namely, he claimed that there exist at least 2d extremal neighboring spheres. In this paper, we show that there are certain gaps in Schatteman’s proof, which is based on the Bruggesser-Mani shelling method. We show that using this method it is possible to prove that there are at least d + 1 extremal neighboring spheres. However, the existence problem of 2d extremal neighboring spheres is still open.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations

In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.

متن کامل

Random differential inequalities and comparison principles for nonlinear hybrid random differential equations

 In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities  have been proved for an IVP of first order hybrid  random differential equations with the linear perturbation of second type. A comparison theorem is proved and  applied to prove the uniqueness of random solution for the considered perturbed random differential eq...

متن کامل

Instability of Extremal Relativistic Charged Spheres

With the question, “Can relativistic charged spheres form extremal black holes?” in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordström solutions for these objects. We consider both constant den...

متن کامل

A Survey on Extremal Problems of Eigenvalues

and Applied Analysis 3 The final solution to problems in 1.3 can yield optimal lower and upper bounds of eigenvalues. Actually, from 1.3 , we have In ∥q ∥ ∥ 1 ) ≤ λn ( q ) ≤ Mn ∥q ∥ ∥ 1 ) ∀q ∈ L1, 1.4 which are optimal. Several extremal problems on Dirichlet, Neumann, and periodic eigenvalues of the Sturm-Liouville operator and the p-Laplace operator have been studied recently, where the potent...

متن کامل

Basic results on distributed order fractional hybrid differential equations with linear perturbations

In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011